South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, Proceedings (2022), pp. 101-114

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ON HARARY ENERGY OF GRAPHS

Anil D. Parmar

Department of Mathematics, Atmiya University, Rajkot - 360005, Gujarat, INDIA

E-mail: anil.parmar1604@gmail.com

(Received: Apr. 08, 2022 Accepted: Aug. 17, 2022 Published: Aug. 30, 2022)

Special Issue

Proceedings of National Conference on "Emerging Trends in Discrete Mathematics, NCETDM - 2022"

Abstract: The Harary matrix of a connected graph G is defined as $H(G) = [a_{ij}]_{n \times n}$, where $a_{ij} = \frac{1}{d(v_i, v_j)}$; for v_i and v_j are non adjacent in G and $a_{ii} = 0$; for all $i, j = 1, 2, 3, \dots, n$. The Harary energy of G is the sum of the absolute values of the eigenvalues of Harary matrix of G. In this paper, the Harary characteristic polynomial of $K_{m,n}$ and Harary energy of some graphs are investigated.

Keywords and Phrases: Eigenvalue, Graph Polynomial, Graph Energy.

2020 Mathematics Subject Classification: 05C50, 05C31, 05C76.

1. Introduction and Preliminaries

Let G be a simple, undirected and connected graph with vertex set $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$. The distance between two vertices v_i and v_j is the length of shortest path between them; for all $1 \leq i, j \leq j$. The maximum distance between any pair of vertices is known as diameter of graph G. For standard terminology and notations in graph theory, rely upon West [14] while for any undefined term related to energy of graphs, refer to Gutman [6].

Definition 1.1. The m-Shadow graph, $D_m(G)$ of a connected graph G is constructed by taking m copies of G say $G_1, G_2, ..., G_m$. Then Join each vertex u in

 G_i to the neighbors of the corresponding vertex v in G_j , $1 \le i, j \le m$.

Definition 1.2. The extended m-Shadow graph, $D_m^*(G)$ of a connected graph G is constructed by taking m copies of G, say $G_1, G_2, ..., G_m$, then join each vertex u in G_i to the neighbors of the corresponding vertex v and with v in G_i , $1 \le i, j \le m$.

The adjacency matrix of a graph G is a symmetric matrix of order n defined as $A(G) = [a_{ij}]_{n \times n}$, where $a_{ij} = 1$, if v_i and v_j are adjacent in G and $a_{ij} = 0$, if v_i and v_j are non adjacent G. The energy $\mathcal{E}(G)$ of a graph G is the sum of absolute values of eigenvalues of adjacency matrix of a graph G with their multiplicity. The concept of energy was introduced by Gutman [5] in 1978 and further explored by [7, 12]. Some variants of graph energy like Distance Energy [10], Randić Energy [2, 13], Color Energy [1] and Laplacian Energy [8] are also available in literature.

The Harary matrix of a connected graph G is defined as $H(G) = [a_{ij}]_{n \times n}$, where $a_{ii} = 0$ and $a_{ij} = \frac{1}{d(v_i, v_j)}$, if $i \neq j$, for all $1 \leq i, j \leq n$. The Harary characteristic polynomial of a graph G is a characteristic polynomial of the Harary matrix, H(G). The eigenvalues of the matrix H(G) is known as Harary eigenvalues of G and the Harary spectrum of G is denoted as $spec_H(G)$. The Harary energy of a graph G is the sum of the absolute values of the Harary eigenvalues of G with their multiplicity $\left(i.e.\ \mathcal{E}_H(G) = \sum_{i=1}^n |h_i|\right)$, where h_i is the Harary eigenvalue of G for all $1 \leq i \leq n$.

The concept of Harary energy was introduced by Gungor and Çevik [4] and further studied by [3, 11]. In the present paper, the Harary characteristic polynomial of $K_{m,n}$ and Harary energy of some graphs are obtained.

For our ready reference, some existing results are stated below.

Proposition 1.1. [9] Let

$$M = \begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

be a symmetric matrix. Then the spectrum of M is the union of spectrum of A + B and A - B. i.e. $spec(M) = spec(A + B) \cup spec(A - B)$.

Proposition 1.2. [9] Let $A, B, C, D \in \mathbb{R}^{n \times n}$ be matrices, Q be an invertible matrix and

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

then $det M = det D \cdot det (A - BD^{-1}C)$.

Proposition 1.3. [9] Let A and A-B be the invertible matrices then $(A-B)^{-1} = A^{-1} + \frac{1}{1+t}A^{-1}BA^{-1}$, where $t = trace(-BA^{-1})$.

Proposition 1.4. [9] Let $A = [a_{ij}]_{n \times n}$ be any matrix such that $a_{ii} = a$ and $a_{ij} = b$; for $i \neq j$ then $det A = (a + (n-1)b)(a-b)^{n-1}$.

Proposition 1.5. [9] If λ is an eigenvalue of the matrix $A = [a_{ij}]_{n \times n}$ with corresponding eigenvector x and μ is an eigenvalue of the matrix $B = [b_{ij}]_{m \times m}$ with corresponding eigenvector y. Then $\lambda \mu$ is an eigenvalue of $A \otimes B$ with corresponding eigenvector $x \otimes y$.

2. Main Results

Theorem 2.1. For $n \geq 2$, $\mathcal{E}_H(K_{n,n}) = 3n - 1$.

Proof. Let $K_{n,n}$ be the complete bipartite graph with the bipartition $\{v_1, v_2, ..., v_n\} \cup \{u_1, u_2, ..., u_n\}$, where $n \geq 2$ be a positive integer then the Harary matrix of $K_{n,n}$ is defined as

		v_1	v_2	v_3	• • •	v_n	u_1	u_2	u_3	• • •	u_n
$H(K_{n,n})=$	v_1	0	$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{2}$	1	1	1		1
	v_2	$\frac{1}{2}$	0	$\frac{1}{2}$		$\frac{1}{2}$	1	1	1		1
	v_3	$\frac{1}{2}$	$\frac{1}{2}$	0		$\frac{1}{2}$	1	1	1		1
	÷	:	÷	÷	٠	÷	÷	÷	÷	٠	:
	v_n	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$		0	1	1	1		1
	u_1	1	1	1		1	0	$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{2}$
	u_2	1	1	1		1		0	$\frac{1}{2}$		$\frac{1}{2}$
	u_3	1	1	1	•••	1	$\frac{1}{2}$	$\frac{1}{2}$	0		$\frac{1}{2}$
	÷	:	÷	÷	٠	÷	÷	÷	÷	٠	:
	u_n	1	1	1	• • •	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$		0

Now,
$$A + B = \begin{bmatrix}
1 & \frac{3}{2} & \frac{3}{2} & \cdots & \frac{3}{2} \\
\frac{3}{2} & 1 & \frac{3}{2} & \cdots & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2} & 1 & \cdots & \frac{3}{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \cdots & 1
\end{bmatrix}$$

Now,
$$\begin{vmatrix}
1 & \frac{3}{2} & \frac{3}{2} & \cdots & \frac{3}{2} \\
\frac{3}{2} & 1 & \frac{3}{2} & \cdots & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2} & 1 & \cdots & \frac{3}{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \cdots & 1
\end{vmatrix}_{n \times n} |x - 1 & -\frac{3}{2} & -\frac{3}{2} & \cdots & -\frac{3}{2} \\
-\frac{3}{2} & x - 1 & -\frac{3}{2} & \cdots & -\frac{3}{2} \\
-\frac{3}{2} & x - 1 & -\frac{3}{2} & \cdots & -\frac{3}{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} & \cdots & x - 1
\end{vmatrix}$$
Now, using Proposition 1.6, we get

Now, using Proposition 1.6, we ge

$$det(xI_n - (A+B)) = \left(x - 1 - (n-1)\frac{3}{2}\right) \cdot \left(x - 1 + \frac{3}{2}\right)^{n-1} = \left(x - \frac{3n-1}{2}\right) \cdot \left(x + \frac{1}{2}\right)^{n-1}$$

$$\Rightarrow spec(A+B) = \begin{pmatrix} \frac{3n-1}{2} & -\frac{1}{2} \\ 1 & n-1 \end{pmatrix}$$

Similarly,
$$\begin{bmatrix} -1 & -\frac{1}{2} & -\frac{1}{2} & \cdots & -\frac{1}{2} \end{bmatrix}$$

$$A - B = \begin{bmatrix} -1 & -\frac{1}{2} & -\frac{1}{2} & \cdots & -\frac{1}{2} \\ -\frac{1}{2} & -1 & -\frac{1}{2} & \cdots & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -1 & \cdots & -\frac{1}{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \cdots & -1 \end{bmatrix}_{n \times n}$$

$$\Rightarrow det(xI_n - (A - B)) = \left(x + \frac{n+1}{2}\right) \cdot \left(x - \left(\frac{1}{2}\right)\right)^{n-1}$$
$$\left(-\frac{n+1}{2} - \frac{1}{2}\right)$$

$$\Rightarrow spec(A - B) = \begin{pmatrix} -\frac{n+1}{2} & \frac{1}{2} \\ 1 & n-1 \end{pmatrix}$$

Therefore,

$$spec(H(K_{n,n})) = spec(A+B) \cup spec(A-B)$$

$$= \begin{pmatrix} \frac{3n-1}{2} & -\frac{1}{2} & -\frac{n+1}{2} & \frac{1}{2} \\ 1 & n-1 & 1 & n-1 \end{pmatrix}$$
 (1)

Hence,

$$\mathcal{E}_{H}(K_{n,n}) = \left| \frac{3n-1}{2} \right| + \left| -\frac{n+1}{2} \right| + \left| -\frac{1}{2}(n-1) \right| + \left| \frac{1}{2}(n-1) \right|$$

$$= \frac{3n-1}{2} + \frac{n+1}{2} + \frac{1}{2}(n-1) + \frac{1}{2}(n-1); \text{ as } n \ge 3$$

$$= \frac{6n-2}{2}$$

$$= 3n-1$$

$$\Rightarrow \mathcal{E}_H(K_{n,n}) = 3n - 1$$

Theorem 2.2. Let $m, n \geq 2$ be the positive integers such that $m \neq n$ then the

Harary characteristic polynomial of the complete bipartite graph $K_{m,n}$ is

$$\varphi_H(K_{m,n};x) = \left(x - \frac{n-1}{2}\right) \left(x + \frac{1}{2}\right)^{m+n-2} \left(x - \frac{m-1}{2} - \frac{mn}{x} - \frac{mn(n-1)}{2x^2}\right)$$

Proof. Let $K_{m,n}$ be the complete bipartite graph with the bipartition $\{v_1, v_2, ..., v_m\} \cup \{u_1, u_2, ..., u_n\}$, where, $m, n \geq 2$ be the positive integers such that $m \neq n$ then the Harary matrix of $K_{m,n}$ is defined as

where,
$$A = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{(m+n)\times(m+n)}$$

$$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & \cdots & \frac{1}{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & 0 \end{bmatrix}_{m \times m}$$

$$B = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}_{m \times n}$$

$$C = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}_{n \times m} \text{ and } D = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & \cdots & \frac{1}{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & 0 \end{bmatrix}_{n}$$

Now, using Proposition 1.4, the Harary characteristic polynomial of $K_{m,n}$ is

$$\varphi(K_{m,n};x) = |xI_{m+n} - H(K_{m,n})|$$

$$= \begin{vmatrix} xI_m - A & B \\ C & xI_n - D \end{vmatrix}$$

$$= \det(xI_n - D) \cdot \det((xI_m - A) - B(xI_n - D)^{-1}C)$$
(2)

$$(xI_n - D)^{-1} = (xI_n)^{-1} + \frac{1}{1+t}(xI_n)^{-1}D(xI_n)^{-1} = \frac{1}{x}I_n + \frac{1}{x^2}D;$$

where, $t = trace(-D(xI_n)^{-1}) = 0.$

$$B\left(\frac{1}{x}I_n + \frac{1}{x^2}D\right)C$$

$$= \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}_{m \times n} \begin{bmatrix} \frac{1}{x} & \frac{1}{2x^2} & \frac{1}{2x^2} & \cdots & \frac{1}{2x^2} \\ \frac{1}{2x^2} & \frac{1}{x} & \frac{1}{2x^2} & \cdots & \frac{1}{2x^2} \\ \frac{1}{2x^2} & \frac{1}{x} & \cdots & \frac{1}{2x^2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2x^2} & \frac{1}{2x^2} & \frac{1}{x} & \cdots & \frac{1}{x} \end{bmatrix}_{n \times n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}_{n \times n}$$

$$= \left(\frac{1}{x} + \frac{n-1}{2x^2} \right) \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}_{m \times n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}_{n \times m}$$

$$\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}_{n \times m}$$

$$= \left(\frac{1}{x} + \frac{n-1}{2x^2}\right) \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & 1 & 1 & \cdots & 1\\ 1 & 1 & 1 & \cdots & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}_{n \times m}$$

$$= n \left(\frac{1}{x} + \frac{n-1}{2x^2}\right) \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & 1 & 1 & \cdots & 1\\ 1 & 1 & 1 & \cdots & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}_{m \times m}$$

$$= n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right)J_m$$

$$xI_m - A - B\left(\frac{1}{x}I_n + \frac{1}{2x^2}D\right)C$$

$$\begin{bmatrix} x & -\frac{1}{2} & -\frac{1}{2} & \cdots & -\frac{1}{2} \\ -\frac{1}{2} & x & -\frac{1}{2} & \cdots & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & x & \cdots & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & x & \cdots & -\frac{1}{2} \\ & \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \cdots & x \end{bmatrix}_{m \times m} \\ = \begin{bmatrix} x - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & \cdots & -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) \\ -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & x - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & \cdots & -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & x - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & \cdots & -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & -\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) & \cdots & x - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) \end{bmatrix}_{m \times m}$$

$$Then by Proposition 1.6, we have
$$\det\left(xI_m - A - B\left(\frac{1}{x}I_n + \frac{1}{x^2}D\right)C\right)$$

$$= \left[x - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) + (m-1)\left(-\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right)\right)\right]$$

$$\cdot \left[x - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right) - \left(-\frac{1}{2} - n\left(\frac{1}{x} + \frac{n-1}{2x^2}\right)\right)\right]^{m-1}$$

$$= \left(x - \frac{m-1}{2} - \frac{mn}{x} - \frac{mn(n-1)}{2x^2}\right) \cdot \left(x + \frac{1}{2}\right)$$
And similarly, $\det(xI_n - D) = \begin{bmatrix} x - \frac{1}{2} - \frac{1}{2} & \cdots & -\frac{1}{2} \\ -\frac{1}{2} & x - \frac{1}{2} & \cdots & -\frac{1}{2} \\ -\frac{1}{2} & \cdots & -\frac{1}{2} \end{bmatrix}$$$

$$\begin{bmatrix} \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \cdots & x \end{bmatrix}_{n \times n}$$

$$= \left(x - \frac{n-1}{2}\right) \cdot \left(x + \frac{1}{2}\right)^{n-1} \tag{4}$$

Hence, put the value of equations (3) and (4) in the equation (2) and we get $\varphi_H(K_{m,n};x)$

$$= \det(xI_n - D) \cdot \det((xI_m - A) - B(xI_n - D)^{-1}C)$$

$$= \left(x - \frac{n-1}{2}\right) \cdot \left(x + \frac{1}{2}\right)^{n-1} \cdot \left(x - \frac{m-1}{2} - \frac{mn}{x} - \frac{mn(n-1)}{2x^2}\right) \cdot \left(x + \frac{1}{2}\right)^{m-1}$$

$$\Rightarrow \varphi_H(K_{m,n}; x) = \left(x - \frac{n-1}{2}\right) \cdot \left(x + \frac{1}{2}\right)^{m+n-2} \cdot \left(x - \frac{m-1}{2} - \frac{mn}{x} - \frac{mn(n-1)}{2x^2}\right)$$

Theorem 2.3. Let G be a regular graph of order n with diameter atmost two and $h_1, h_2, h_3, ..., h_n$ be Harary eigenvalues of a graph G with $|h_i| \ge \frac{m-1}{2m}$, for all $1 \le i \le n$ then

$$\mathcal{E}_H(D_m(G)) = m\mathcal{E}_H(G) + \frac{m-1}{2}\theta + mn - n$$

where, θ is the difference between the number of positive and negative Harary eigenvalue of the graph G.

Proof. Let G be a regular graph with vertex set $\{v_1, v_2, ..., v_n\}$ then the Harary matrix H(G) is defined as

Now, consider the *m*-copies $G_1, G_2, ..., G_m$ of a graph G and join each vertex u of graph G_i to the neighbors of the corresponding vertex v in the graph G_j , for all $1 \le i, j \le m$ to obtain $D_m(G)$. Then the Harary matrix of the graph $D_m(G)$ is defined as

$$H(D_m(G)) = \begin{bmatrix} H(G) & H(G) + \frac{1}{2}I_n & H(G) + \frac{1}{2}I_n & \cdots & H(G) + \frac{1}{2}I_n \\ H(G) + \frac{1}{2}I_n & H(G) & H(G) + \frac{1}{2}I_n & \cdots & H(G) + \frac{1}{2}I_n \\ H(G) + \frac{1}{2}I_n & H(G) + \frac{1}{2}I_n & H(G) & \cdots & H(G) + \frac{1}{2}I_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ H(G) + \frac{1}{2}I_n & H(G) + \frac{1}{2}I_n & H(G) + \frac{1}{2}I_n & \cdots & H(G) \end{bmatrix}_{mn \times mn}$$

$$\Rightarrow H(D_{m}(G)) + \frac{1}{2}I_{mn} = \begin{bmatrix} H(G) + \frac{1}{2}I_{n} & H(G) + \frac{1}{2}I_{n} & H(G) + \frac{1}{2}I_{n} & \cdots & H(G) + \frac{1}{2}I_{n} \\ H(G) + \frac{1}{2}I_{n} & H(G) + \frac{1}{2}I_{n} & H(G) + \frac{1}{2}I_{n} & \cdots & H(G) + \frac{1}{2}I_{n} \\ H(G) + \frac{1}{2}I_{n} & H(G) + \frac{1}{2}I_{n} & H(G) + \frac{1}{2}I_{n} & \cdots & H(G) + \frac{1}{2}I_{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ H(G) + \frac{1}{2}I_{m} & H(G) + \frac{1}{2}I_{n} & H(G) + \frac{1}{2}I_{n} & \cdots & H(G) + \frac{1}{2}I_{n} \end{bmatrix}_{mn \times m}$$

$$\Rightarrow H(D_{m}(G)) + \frac{1}{2}I_{mn} = J_{m} \otimes [H(G) + \frac{1}{2}I_{n}]$$
where, J_{m} is a matrix of order m with all the entries are 1. Moreover, $spec(J_{m}) = \begin{pmatrix} m & 0 \\ 1 & m - 1 \end{pmatrix}$. Also, the eigenvalues of $H(G) + \frac{1}{2}I_{n}$ are $h_{i} + \frac{1}{2}$, for all $1 \leq i \leq n$. Thus by Proposition 1.7, we get
$$I_{m}(h_{i} + \frac{1}{2}) = 0$$

Thus by Proposition 1.7, we get

Thus by Proposition 1.7, we get
$$spec(H(D_m(G)) + \frac{1}{2}I_{mn}) = \begin{pmatrix} m(h_i + \frac{1}{2}) & 0 \\ n & mn - n \end{pmatrix}$$

$$\Rightarrow spec(H(D_m(G))) = \begin{pmatrix} m(h_i + \frac{1}{2}) - \frac{1}{2} & -\frac{1}{2} \\ n & mn - n \end{pmatrix}$$

$$\Rightarrow spec(H(D_m(G))) = \begin{pmatrix} mh_i + \frac{m-1}{2} & -\frac{1}{2} \\ n & mn - n \end{pmatrix}$$
Now, as we have $|h_i| > \frac{m-1}{2}$; for all $1 < i < n$.

$$\left| h_i + \frac{m-1}{2m} \right| = \begin{cases} |h_i| + \frac{m-1}{2m} & ; \text{ for } h_i \ge 0 \\ |h_i| - \frac{m-1}{2m} & ; \text{ for } h_i < 0 \end{cases}$$

Therefore.

$$\begin{split} \mathcal{E}_{H}(D_{m}(G)) &= \sum_{i=1}^{n} \left| mh_{i} + \frac{1}{2}(m-1) \right| + \sum_{i=1}^{mn-n} \left| -1 \right| \\ &= m \left(\sum_{i=1}^{n} \left| h_{i} + \frac{m-1}{2m} \right| \right) + (mn-n) \\ &= m \left(\sum_{h_{i} \geq 0} \left(\left| h_{i} \right| + \frac{m-1}{2m} \right) + \sum_{h_{i} < 0} \left(\left| h_{i} \right| - \frac{m-1}{2m} \right) \right) + (mn-n) \\ &= m \left(\sum_{h_{i} \geq 0} \left| h_{i} \right| + \sum_{h_{i} < 0} \left| h_{i} \right| + \frac{m-1}{2m} \left(\sum_{h_{i} \geq 0} 1 - \sum_{h_{i} < 0} 1 \right) \right) + mn-n \\ &= m \left(\mathcal{E}_{H}(G) + \frac{m-1}{2m} \theta \right) + mn-n; \text{ as, } \theta \text{ is the difference between} \\ &= m \mathcal{E}_{H}(G) + \frac{m-1}{2} \theta + mn-n \end{split}$$

Theorem 2.4. Let G be a regular graph of order n with diameter atmost two and $h_1, h_2, ..., h_n$ be Harary eigenvalues of a graph G with $|h_i| \ge \frac{m-1}{m}$, for all $1 \le i \le n$ then

$$\mathcal{E}_H(D_m^*(G)) = m \, \mathcal{E}_H(G) + (m-1)\theta + (mn-n)$$

where, θ is the difference between the number of positive and negative Harary eigenvalues of the graph G.

Proof. Let G be a regular graph with diameter at most two and H(G) be the Harary matrix of the graph G.

Now, consider the m-copies $G_1, G_2, ..., G_m$ of graph G and join each vertex u of a graph G_i to the neighbors of the corresponding vertex v and also with v in graph G_j for all $1 \le i, j \le m$ to obtain extended m-shadow $D_m^*(G)$. Then the Harary matrix of the graph $D_m^*(G)$ is given as

atrix of the graph
$$D_m^*(G)$$
 is given as
$$H(D_m^*(G)) = \begin{bmatrix} H(G) & H(G) + I_n & \cdots & H(G) + I_n \\ H(G) + I_n & H(G) & \cdots & H(G) + I_n \\ \vdots & \vdots & \ddots & \vdots \\ H(G) + I_n & H(G) + I_n & \cdots & H(G) \end{bmatrix}_{mn \times mn}$$

$$\Rightarrow H(D_{m}^{*}(G)) + I_{mn} = \begin{bmatrix} H(G) + I_{n} & H(G) + I_{n} & \cdots & H(G) + I_{n} \\ H(G) + I_{n} & H(G) + I_{n} & \cdots & H(G) + I_{n} \\ \vdots & \vdots & \ddots & \vdots \\ H(G) + I_{n} & H(G) + I_{n} & \cdots & H(G) + I_{n} \end{bmatrix}_{mn \times mn}$$

$$= J_{m} \otimes [H(G) + I_{n}]$$

where J_m is a matrix of order m with all the entries are 1. Moreover, $spec(J_m) = \begin{pmatrix} m & 0 \\ 1 & m-1 \end{pmatrix}$. Also, the eigenvalues of the matrix $H(G) + I_n$ are $h_i + 1$, for all 1 < i < n.

Hence, from Proposition 1.7, we get

$$spec(H(D_m^*(G)) + I_{mn}) = \begin{pmatrix} m(h_i + 1) & 0 \\ n & mn - n \end{pmatrix}.$$

$$\Rightarrow spec(H(D_m^*(G))) = \begin{pmatrix} mh_i + (m - 1) & -1 \\ n & mn - n \end{pmatrix}$$

Now, as we have $|h_i| \ge \frac{m-1}{m}$ for all $1 \le i \le n$,

$$\left| h_i + \frac{m-1}{m} \right| = \begin{cases} |h_i| + \frac{m-1}{m} & ; \text{ for } h_i \ge 0\\ |h_i| - \frac{m-1}{m} & ; \text{ for } h_i < 0 \end{cases}$$

Hence,

$$\mathcal{E}_{H}(D_{m}^{*}(G)) = \sum_{i=1}^{n} |mh_{i} + (m-1)| + \sum_{i=1}^{mn-n} |-1|$$

$$= m \sum_{i=1}^{n} \left| h_{i} + \frac{m-1}{m} \right| + (mn-n)$$

$$= m \left(\sum_{h_{i} \geq 0} \left(|h_{i}| + \frac{m-1}{m} \right) + \sum_{h_{i} < 0} \left(|h_{i}| - \frac{m-1}{m} \right) \right) + (mn-n)$$

$$= m \left(\sum_{h_{i} \geq 0} |h_{i}| + \sum_{h_{i} < 0} |h_{i}| + \frac{m-1}{m} \left(\sum_{h_{i} \geq 0} 1 - \sum_{h_{i} < 0} 1 \right) \right) + (mn-n)$$

$$\mathcal{E}_{H}(D_{m}^{*}(G)) = m\left(\mathcal{E}_{H}(G) + \frac{m-1}{m}\theta\right) + (mn-n); \text{ as, } \theta \text{ is the difference}$$
between the number of positive and negative Harary G
eigenvalue of graph
$$= m \mathcal{E}_{H}(G) + (m-1)\theta + (mn-n)$$

3. Conclusion

The energy of a graph is one of the important idea of spectral graph theory. This idea is a bond between chemical science and mathematical science. In this paper, I have derived a Harary characteristic polynomial of $K_{m,n}$ and the Harary energy of some graphs.

Acknowledgment

The author is highly indebted to the anonymous referee for their kind comments and constructive suggestions on the first draft of this paper

References

- [1] Adiga C., Sampathkumar E., Sriraj M. A., Shrikanth A. S., Color Energy of a Graph, Proc. Jangjeon Math. Soc., 16 (2013), 335-351.
- [2] Bozkurt S. B., Gungor A. D., Gutman I., Cevik A. S., Randić Matrix and Randić Energy, MATCH Math. Comput. Chem., 64, (2010), 239-250.
- [3] Cui Z., Liu B., On Harary Matrix, Harary Index and Harary Energy, MATCH Commun. Math. Comput. Chem., 68, (2012), 815-823.
- [4] Gungor A. D., Çevik A. S., On the Harary Energy and Harary Estrada Index of a Graph, MATCH Commun. Math. Comput. Chem., 64, (2010), 281-296.
- [5] Gutman I., The Energy of Graph, Ber. Math. Statit. Sket. Forshugsz. Graz, 103, (1978), 1-22.
- [6] Gutman I., Polansky O. E., Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
- [7] Gutman I., Ramane H. S., Research on Graph Energies in 2019, MATCH Math. Comput. Chem., 84, (2020), 277-292.
- [8] Gutman I., Zhou Bo, Laplacian energy of a graph, Linear Algebra and its Applications, 414, (2006), 29–37.

- [9] Horn R. A., Johnson C. R., Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
- [10] Indulal G., Gutman I., Vijaykumar A., On the Distance Energy of Graphs, MATCH Math. Comput. Chem., 60, (2008), 461-472.
- [11] Ramane H. S., Ashoka K., Harary Energy of Complement of Line Graphs of Regular Graphs, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69, (2020), 1215-1220.
- [12] Vaidya S. K., Popat K. M., Some New Results on Energy of Graphs, MATCH Math. Comput. Chem., 77, (2017), 589-594.
- [13] Vaidya S. K., Rathod G. K., Randić Energy of Various Graphs, Advances and Applications in Discrete Mathematics, 28, (2021), 253-265.
- [14] West D. B., Introduction to Graph Theory, Prentice Hall, New Delhi, India, 2003.